首页> 外文OA文献 >Development and verification of a time-domain approach for determining forces and moments in structural components of floaters with an application to floating wind turbines
【2h】

Development and verification of a time-domain approach for determining forces and moments in structural components of floaters with an application to floating wind turbines

机译:开发和验证用于确定浮子的结构部件中的力和力矩的时域方法,其应用于浮动风力涡轮机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Structural design of the floater is an important aspect in developing cost efficient and reliable floating wind turbines. It is difficult to well account for the effect of strong non-linear dynamic characteristics and transient loading events, e.g. wind turbine faults, of floating wind turbines in a frequency-domain finite element analysis. The time-domain approach which implements the Morison's formula cannot accurately account for the hydrodynamic loads on the hull of floating wind turbines. While, the conventional hybrid frequency-time domain approach (based on the potential flow theory) fails to capture structural responses of the hulls since a rigid-body global model rather than a finite element model of the hull is employed. The present paper deals with the development and verification of a time-domain approach that can be easily implemented in various state-of-the-art computer codes for wind turbine analysis, e.g. Simo/Riflex/Aerodyn, OrcaFlex and FAST + CHARM3D, to extend their capabilities to analyze global forces and moments in structural components of a generic floater subject environmental loads from e.g. wind and waves. The global forces and moments in the structural components might be used as inputs of design formulas for structural strength design checks and/or used as boundary conditions in a sub-model finite element analysis to determine structural responses such as stresses. The proposed approach focuses on modeling of the inertia and external loads on the hull and mapping of the loads in the finite element model of the hull. In the proposed approach, floating wind turbines are considered as a system of several structural components, e.g. blades, rotational shaft, nacelle, tower, mooring lines, columns, pontoons and braces, rather than one rigid-body, while a finite element model for the hull is developed to represent the global stiffness of the structural components. The external and inertial loads on the hull are modeled as distributed loads rather than the integrated forces and moments. The conventional hybrid frequency-time domain approach, which is available in the state-of-the-art computer codes, is implemented to model the hydrodynamic loads on each structural component with essential modifications with respect to the corresponding hydrodynamic coefficients, e.g. added mass and potential damping coefficients and wave excitation forces. Approaches for modeling the hydrostatic pressure forces, gravity loads, drag forces and inertial loads on each structural component are also illustrated. Second order and higher order terms of the hydrostatic and hydrodynamic loads and the hydroelasticity effects are not accounted for in the present paper but can be further included. So far, the proposed approach has been implemented in the computer code Simo/Riflex/Aerodyn to analyze global forces and moments in the hull of a semi-submersible wind turbine. Good agreement between the reference values and the simulation results has been observed and indicates that the developed time-domain numerical models are reliable. The simulation results show that the low-frequency aerodynamic loads and fluctuations of hydrostatic pressure forces on and gravity of the floating wind turbine are important contributions to the structural responses, in particular, in the low-frequency range.
机译:浮子的结构设计是开发经济高效且可靠的浮式风力涡轮机的重要方面。很难很好地说明强大的非线性动态特性和瞬态加载事件(例如瞬态)的影响。浮动风力涡轮机的风力涡轮机故障的频域有限元分析。实施莫里森公式的时域方法无法准确地考虑浮动风力涡轮机船体上的流体动力载荷。然而,由于采用了刚体全局模型而不是船体的有限元模型,传统的混合频域-时域方法(基于势流理论)无法捕获船体的结构响应。本论文涉及时域方法的开发和验证,该方法可以轻松地在各种用于风力涡轮机分析的最新计算机代码中实现。 Simo / Riflex / Aerodyn,OrcaFlex和FAST + CHARM3D扩展了它们的功能,以分析通用浮标受环境载荷(例如来自风浪。结构构件中的整体力和弯矩可以用作结构强度设计检查的设计公式的输入,和/或在子模型有限元分析中用作确定条件(例如应力)的边界条件。拟议的方法侧重于对船体的惯性和外部载荷进行建模,并在船体的有限元模型中对载荷进行映射。在所提出的方法中,浮动风力涡轮机被认为是由多个结构部件组成的系统,例如叶片,旋转轴,机舱,塔架,系泊缆绳,圆柱,浮桥和支撑,而不是一个刚体,同时为船体开发了一个有限元模型来表示结构部件的整体刚度。船体上的外部载荷和惯性载荷被建模为分布载荷,而不是集成的力和力矩。在现有技术的计算机代码中可用的常规混合频域-时域方法被实现为对每个结构部件上的流体动力载荷进行建模,并且对相应的流体动力系数进行了必要的修改。增加了质量和潜在的阻尼系数以及激波力。还说明了对每个结构部件上的静水压力,重力载荷,阻力和惯性载荷进行建模的方法。在本文中没有考虑静水压力和流体动力载荷以及水弹性效应的二阶和更高阶项,但可以将其进一步包括在内。到目前为止,该提议的方法已在计算机代码Simo / Riflex / Aerodyn中实现,以分析半潜式风力涡轮机船体的整体力和力矩。已经观察到参考值与仿真结果之间的良好一致性,表明所开发的时域数值模型是可靠的。仿真结果表明,低频空气动力载荷和静水压力波动对浮式风力发电机的影响和重力对结构响应,尤其是在低频范围内,具有重要的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号